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The natural-convection boundary-layer flow over a semi-infinite heated plate of 
arbitrary inclination is studied by first identifying a set of combined boundary-layer 
variables and then casting the governing equations into a universal form. The 
generalized problem yields the existing similarity solutions for the limiting cases of 
horizontal and vertical plates, and describes the gradual transition of the flow 
pattern between these two limits at distances from the leading edge which depend on 
the inclination angle. Near the leading edge the buoyancy force acting normal to the 
plate causes an ‘impulsive ’ driving force to the fluid motion along the plate, while 
the ‘regular ’ driving force exerted by the tangential buoyancy force becomes 
dominating downstream. Both the exact and the locally-similar solutions are 
obtained and are found to agree well with each other. 

1. Introduction 
For natural-convection boundary-layer flow over a heated flat plate, similarity 

solutions exist (Ostrach 1953; Stewartson 1958; Gill, Zeh & Del-Case1 1965) for the 
limiting situations of vertical (a = in) and horizontal (a  = 0) inclinations, where a is 
the angle of inclination of the plate to the horizontal plane. For a plate with arbitrary 
inclination except for very small values of a, most of the existing analyses have 
simply adopted the similarity solution for the vertical case, with the buoyant force 
being the component of the body force g along the plate. The reasoning being the 
anticipated dominance of the body force component along the plate as compared to 
that normal to the plate. 

There are certain aspects which either are fundamentally unsatisfactory or require 
clarification with the above approximation. The first is its inability to describe flows 
with small a and the associated transition to large a behaviours. In fact the proper 
parametric grouping through which ‘small’ and ‘large’ a can be defined has not been 
identified. Furthermore, since the similarity solutions scale with xi and xi for a = 0 
and in respectively, where x is the streamwise distance from the leading edge, these 
different scalings then clearly imply the lack of similarity €or intermediate values of 
a. The final point to note is that, again because of the different scalings, it may be 
expected that the dominance of the streamwise and normal components of the body 
force should depend not only on the inclination angle a but also on the streamwise 
distance x. 

In view of the above considerations, we have developed a generalized formulation 
for the natural-convection boundary-layer flow over a flat plate of arbitrary 
inclination. The formulation identifies a proper set of boundary-layer variables 
through which the relative importance of the body force components can be assessed. 

The formulation, analysis, and results are presented in the following. 
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2. Governing equations and preliminary considerations 
We consider the two-dimensional, laminar, boundary-layer flow above an 

isothermal semi-infinite heated plate of temperature T = T, and inclination angle a. 
The otherwise stationary fluid has a temperature T, and is Boussinesq. The flow 
configuration is shown in figure 1 .  The governing equations are 

0 = --- I "+q/3(T-TT,)cosa, 
P m  a Y  

(3) 

(4) 

u = v = O ,  T=T, a t  y = O ,  ( 5 )  
(6) 

aT aT a2T 
u-+v- = K- ,  

ax ay ay2 
subject to 

u = 0, T = T, outside the boundary layer. 

Here y is the distance normal to the plate, while u and u are the x and y velocity 
components. The kinematic viscosity, v ,  thermal diffusivity , K ,  and thermal 
expansion coefficient, p, are taken as constants for simplicity. 

In  order to gain further insight into the phenomenon, especially the different 
manner through which the normal and tangential components of buoyancy force 
drive the fluid along the plate, we integrate (3) to obtain 

which when substituted into (2) yields 

where 

au au azU 

ax ay a y 2  
u-+ u-- v ~ = q/3(Tw - T,) (cos a) 8 dy +g/3(T, - T,) (sin a) 8, (8) 

T- T, e=- 
Tw-T,' 

Evaluating (7) and (8) a t  the plate surface, y = 0, where the effects of both buoyancy 
force components become maximum, we obtain 

a Z u  

aY2 
- V- (2, y = 0) = g/3(TW- T,) (cos a) O(x, y) dy +gp(T,-- T,) (sin a). (1  1 )  

The physical meaning of (10) and (1 1) is the following. First, (10) indicates that the 
normal buoyant force acting per unit distance of x induces a negative pressure a t  the 
plate surface. The magnitude of this pressure continuously increases downstream 
because of the monotonic increase of the thickness of the boundary layer, 8, which 
is proportional to  the integral s: 8(x, y) dy for near-unity-Prandtl-number fluids of 
interest. This therefore constitutes a streamwise pressure gradient force, - ap/ax, as 
represented by the first term on the right-hand side of (11).  The second term there 
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FIGURE 1 .  Configuration of the problem. 

represents the streamwise buoyant force, which is a constant. Thus both components 
of the buoyant force contribute to the motion in the streamwise direction : indirectly 
through the normal component and directly through the tangential component. 
These two buoyant forces are balanced by the shear stress a t  the plate surface, given 
by the left-hand side of (11) .  

We further note that since the thermal boundary-layer thickness is expected to 
vary with S - xm, where a < m < g, its derivative with x, dS/dx, diverges a t  the 
leading edge (x = 0) and decreases to zero as x tends to infinity. Since this term is 
represented by the normal buoyant force term in (1 l), and since the corresponding 
tangential buoyant force term is constant, we conclude that, as anticipated earlier 
based on scaling arguments, the tangential motion is dominated by the normal 
buoyant force near the leading edge and by the tangential buoyant force far 
downstream. The transition from the horizontal-plate-like flow to the vertical-plate- 
like flow is expected to take place a t  some streamwise distance xt, which is 
determined by the inclination angle a and the strength of the buoyant force 

Based on the above considerations, we now present a solution to this problem. 
gP(Tw-  T,)/v2.  

3. Analysis 

constructed only through the local Grashof number 
We consider a dimensionless gauge function of x,&x).  Such a function can be 

so that an appropriate choice of [(x) is 

[ = G&. (13) 
We normalize the y-coordinate by using the local boundary-layer thickness S(x), 

with 

19-2 
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Setting the streamfunction in the form 

(8) is transformed into 

A .  Umemura and C. K.  Law 

$ = V G ( t ) F ( t ,  

where prime designates differentiation with respect to y . 
The above equations contain two arbitrary functions i and G. For their 

specification, we first require that our solution coincides with the similarity solutions 
for the limiting cases of a = 0 and in. This may be satisfied if we put 

P G = 7 .  

h 
Then, (17) becomes 

so that the coefficients of F” and FF” become constants for any [-power of i. 
\lie may define h correctly to express the local thermal bouqdary-layer thickness, 

&((), in such a way that the n9n;diTeAnsional teFperature B(6 ,  y) takes the value of 
0.01, say, at  ti constant y, = &&)/h(t) for any 6. This condition, together with the 
other boundary conditiopt relevant, closes the problem and enables us to determine 
the fynctional form of h(6) simultaneously. But in this case we have to solve (19) 
with h unknown and there is no advantage over solving the original equation system. 
The difficulty in our problem lies in the point that different power dependences of the 
boundary-layer thickness a t  the two limiting cases make it difficult t o  obtain the 
solution which is uniformly valid over the whole d$main. We would rather like to 
utilize the arbitrariness of the intro4u:ed function h to resolve this difficulty. 

To specify the arbitrary function h( t ) ,  we require that such a specification should 
;o$ alter the character of the equation in that changes in the flow variables, such a: 
h(6) itself as well as the stream function F ,  should be of the order of unity in the (6, 
y)-space. While there may exist a variety of ways to achieve this goal, the following 
physically-motivated specification appears to be quite adequate. 

We consider (19) evaluated a t  y = 0 : 

where F ( i ,  0) and F([, 0) have been assumed zero as conf@med later. If somehow 
represents the local boundary-layer thickney, then P”’((,O) and s: Bdy should be 
quantities of O(l)Aove; the whole range o( 6. For the case of a = 0 the similarity 
solution assumes h = @ which yield; -r(k, 0) = 0.692 aqd 1: Bdy = 1.83 while the 
other limiting case of a = in with h = 5~ results in - F ( k ,  0) = 0.952 and s: Bdy = 
1.85. The very small differences between these two pairs of limiting values suggests 
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that both qyantities have weak dependences on g and may be regarded as constants 
to specify h. This assumption is similar to the idea involved in the Pohlhausen 
integral method, in which the functional form of F and 8 in 7 are appropriately 
assigned as inputs. Hence, we write 

B = e k % c o s a + s i n a  E d5 1 . 
This equation approximates (20) in an average sense, but is not equivalent to it. 
Thnerefore, we can use (21) as an additional independent equation in solving (19) even 
if h obtained from (21) does not correctly describe the change in the boundary-layer 
thickness. The advantage is to make it possible to find a solution to (20) which i; 
uniformly valid over the whole range since (21)) as shown in the Appendix, yields h 
with the correct power dependences in the limiting cases of a = 0 and in to bridge 
them. Once the solution is obtained, it will be easy to reproduce the actual boundary- 
layer thickness from the solution. 

We have not yet determined the values of A and B. Their choice i; immaterial so 
far ,as they are constants of O(1). The degree to which the resulting h approximates 
ST($), however, depends on the phoice. This point may be checked by calculating 
q,([). The better approximated h will yield less change in that value. An appropriate 
choice would be to use their mean values, but we may as well set one of them to 
be unity without loss of generality because the forms of (19) a9d the correspo9ding 
heat transfer equation are invariant in the transformation of h, 7 and F to Ch, q / C  
and CF, where C is an arbitrary constant. Thus, (21) may be rewritten as 

1 1 = C[K-cosa+sina d$ . 
E d5 

We shall first put K = 1 and then proceed to find a best fitting value ofn K i? order 
to show how the choice of K influences the degree of approximation of h to 6,. The 
influence of K is expected to weaken as a+$, as shown in (22). Of course, the exact 
solution itself is in principle also not influenced by the choice of the K-value. 

Thus together with the initial condition 

the function is defined. 
h = O  at f = O ,  

Finally, the parameter a present in (19) and (22) can be eliminated through the 
transformations 

g=- A (cosa)! A (c0sa)f 
K C ,  h=-?;h. 

(sin a)r (sin a)$ 

Summarizing, the system of equations to be solved is the following. 
Boundary-layer coordinates : 
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Momentum equation : 

A .  Umemura and C. K .  Law 

Energy equation : 

0 + P r  l-- F % =  Pr6 F - - - 0  [:;I [::I 
Auxiliary equation (boundary-layer thickness) : 

Boundary conditions : 

Solution of the problem can be further facilitated by replacing the second 
boundary condition in (32) by 

In fact, integration of the original boundary condition yields 

F(6,O) = 0. (35) 

F(6,O) = Cenp[ -I(----)dS] 1 i d h  

6 hd6 ’ 

where C is the constant of integration. I n  the limit of 6+0, we have h+@ and 

F(6,O) = (76% (37) 

Since the similarity solution for the horizontal-plate case requires the vanishing of 
F(0,  0), the constant of integration, C,  should be zero so that the present solution can 
match the similarity solution as 6 approaches zero. This establishes the use of (35). 

The boundary-layer problem can be considered to be completely specified. There 
are two special solutions to this problem. From (25) ,  a+O or corresponds to [+ 
0 or co respectively. I n  these asymptotic limits the above partial differential 
equation system reduces to an ordinary differential equation system which governs 
the similarity solutions for the horizontal and vertical plate cases (see Appendix). 
Another special case of interest is the locally-similar solution defined by setting to 
zero all terms involving partial differentiation of F and 8 with respect to  5 in the 
equation system. 

4. Results and discussions 
Both the exact solution and the locally-similar solution have been numerically 

obtained for an assumed Prandtl number of 0.72. Figure 2 shows the profiles of the 
function @(f ,  y), calculated with K = 1 in (31), in which the exact and locally-similar 
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FIGURE 2. Exact and locally similar solutions of the temperature function O ( 6 ,  v,~) for Pr = 0.72, 
calculated on the basis of (31) with K = 1. 
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FIGURE 3(a) .  For caption see next page. 
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FIGURE 3. (a) Variations of characteristic thermal quantities with f .  -, exact solution; ----, 
locally similar solution. ( b )  Variations of characteristic dynamic quantities with 6. -, exact 
solution ; ---- , locally similar solution. 

solutions are indistinguishable from each other. The local thermal boundary-layer 
thickness, cYT(C), is derived by multiplying by h(6) the value 7 = ~ ~ ( 6 )  a t  which the 
function t9([,7) takes the value of 0.01, Figure 3(a)  shows the variations of ym, j: t9 
dy and O'(6 ,O)  with 6.  The exact and locally-similar solutions are again in- 
distinguishable from each other, implying that the locally-similar solution is an 
adequate approximation of the thermal boundary layer. 

Figure 4 shows the variation of h with 6. In  the figure the actual thermal boundary- 
layer thickness, 6,, is also depicted in broken line for comparison. The solution shows 
a smooth transition from the horizontal to the vertical limits. The corresponding 
transition of m from $ to f is shown in figure 5.  

Figure 6 compares the velocity profiles of the exact solution with the locally 
similar solution. The adopted coordinates are normalized by use of the thermal 
boundary-layer thickness, so that one can see how the location of the maximum 
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FIGURE 4. Variation of the .boundalqilayer-thickness function h(6).  I n  the limits of small and large 
6 ,  h approaches the asymptotes ($)r@ and $:, respectively, which are denoted by dashed lines. The 
intersection point of the asymptotes is (g)s = 0.295. 
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FIGURE 5 .  Variation of the exponent m between the horizontal-plate and vertical-plate limits. 

velocity point changes within the thermal boundary layer. The figure indicates a 
gradual downward movement of the maximum velocity point in the course of 
transition from the horizontal-plate-like to the vertical-plate-like flow. Unlike the 
temperature profiles, the velocity profiles show substantial disagreement between 
the two solutions in the transition region. 

The maximum deviation in F ( t ,  a), F ” ( t , O )  and F”’(6,O) shown in figure 3 ( b )  is 
about 10 %. These results are consistent with the greater sensitivity of the velocity 
profiles to the buoyancy induced forces, thereby making i t  more sensitive to 
approximations in the analysis. 

The functional form of h presented above is based on the auxiliary equation (31) 
with K = 1. Although the exact solution itself does not depend on the value of K ,  an 
appropriate choice of K-value gives the best fitting of h with ST in their form. The 
solutions for K = 2.5, shown in figure 3, appear to provide the best fit among several 
tested values. They show good uniformity over the whole range of 6 ,  and i t  was also 
found that, in this case, the temperature profiles in figure 2 degenerate to a single 
curve in a good approximation. 
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FIGURE 6. Exact and locally-similar solutions of the velocity function F(6, q )  for Pr = 0.72. 
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FIGURE 7. The transition Grashof number, Gr,, as a function of the inclination angle a andupper 
and lower bounds on the boundary-layer approximation. 
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The transition distance x, a t  which the flow pattern changes from being horizontal- 
plate-like t o  vertical-plate-like can be taken to  be the x at which the magnitudes of 
the two buoyancy-force terms on the right-hand side of (11) become equal. The exact 
numerical solution gives & = 0.341, which is closely located at  the intersection point 
of the two asymptotes in figure 4. The transition distance for a given inclination 
angle a is therefore given by 

Figure 7 shows the transition Grashof number, Gr,, as a function of a. Above this line 
the vertical-plate-like flow pattern is dominant. The very small value of tt in (38) 
makes the transition distance very small except near a = 0 at which the factor 
cos%a/sin%a becomes large. Thus the flow is vertical-plate-like over most of the plate 
length unless the inclination angle is very small. We also note that the transition 
point approaches the leading edge as the temperature difference, (Tw- T,), increases. 

The quantities of engineering interest are the distributions of surface heat flux, Q, 
and shear stress, T,, along the plate. They are given in non-dimensional form by 

and can be evaluated from the values of el((, 0), F((, 0) and h(6) in figures 3 and 4. 
The results on the surface heat flux and shearing stress show that they have 

greater values near the leading edge for the horizontal plate than for the vertical 
plate. This is caused by the different fluid driving mechanisms in these two cases. 
That is, while the driving force along the plate is regular for the vertical plate, for the 
horizontal plate the driving force, aplax, diverges a t  x = 0, implying an impulsive 
force acting near the leading edge. As a result, near the leading edge the fluid flows 
faster for the horizontal plate than for the vertical plate, thereby resulting in a 
thinner boundary layer and greater surface heat flux and shearing stress. 

The above behaviour, however, should be qualified on the validity of the 
boundary -layer assumption near the leading edge, where the value of x becomes 
comparable with the local boundary-layer thickness. This lower limit in x for the 
boundary-layer assumption to hold can be estimated from the relation xL = a(%,), 
which gives xL[gp(T, - Tm)/v2]) = (#and 1 for a = 0 and in respectively. These values 
are compared with the value of x a t  which the boundary-layer thicknesses for the 
a = 0 and in cases become equal, given by x,[gP(T, - T,)/v*$ = (3);. Since xE < xL, 
the boundary-layer behaviour discussed in the previous paragraph is actually 
somewhat irrelevant. The dash-dot line near the bottom in figure 7 shows the lower 
bound on Gri at various a when we employ xL(() = 10h(t) as the limiting case. Below 
it  the boundary-layer approximation is no longer valid. 

There is also an upper limit to 2. Since the temperature profile within the boundary 
layer has negative derivatives in the y-direction for a <in, the state is not 
dynamically stable. The increasing boundary-layer thickness along the plate makes 
the local Rayleigh number reach a critical value so that some kind of cellular 
convection is expected to take place a t  distances further downstream. Assuming that 



582 A .  Umemura and C. K .  Law 

the variation of the flow field in the x-direction is small compared with that in the 
y-direction, we may apply the stability analysis developed for the classical BBnard 
problem. The rigorous analysis, however, is not straightforward since the undisturbed 
state has a velocity field. Nevertheless, we may expect that this fact does not modify 
so much the values of the critical Rayleigh number which is obtained from the 
BBnard problem (Deardorff 1965). Thus, using the critical Rayleigh number for the 
fixed surface case, Ra, = 1100, say, we may express our stability condition as 

where r is a correction factor due to the difference of the problem. Since 5 is a 
function of the local Grashof number Gr and the inclination angle a, the above 
inequality predicts the position of occurrence of instability as a function of a. The 
calculated upper bound is shown in figure 7,  assuming r = 1. The same figure 
indicates that the transition is observed only at small a in the range of validity of the 
boundary-layer approximation. 

In particular for a = 0 the critical R,ayleigh number is determined from the value 
of the critical Gr,  consistent with the experimental result by Rotem & Claassen 
(1969). Of course, such an instability does not occur for the case of a = in. Once the 
instability condition is met, the boundary layer may grow rapidly because, in our 
problem, the outer edge of the boundary layer is not restricted by any constraint. 
This situation is similar to what is observed in the horizontal thermal boundary 
layers of the fixed surface convection cell. In this case the instability leads to  the 
separation into smaller cells. 

5. Concluding remarks 
In the present study we have successfully obtained a generalized formulation for 

the natural convection boundary-layer flow over a heated plate with arbitrary 
inclination. The formulation reveals the important physical insight that the flow 
characteristics depend not only on the extent of inclination but also on the distance 
from the leading edge. Thus, except for the limiting cases of a = 0 and in, the flow 
is horizontal-plate-like near the leading edge and is vertical-plate-like downstream of 
it. Furthermore, the driving force for the flow has an impulsive character near the 
leading edge but becomes more regular further downstream. 

It is also of interest to note the close agreement between the exact and locally- 
similar solutions. This is reasonable because the general solution is bounded by two 
similarity solutions, and because the boundary conditions remain the same for all 
inclinations. The availability of an accurate locally-similar solution, and the 
existence of such a locally-similar flow as implicated by it, are expected to facilitate 
future theoretical and experimental developments. 

Dr S. Nam assisted in obtaining the numerical solution of an earlier version of the 
formulation. This research was supported by the Heat Transfer Program of the US 
National Science Foundation. A. Umemura was on leave from Yamagata University, 
Japan. 
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Appendix 
Here we present the self-similar as well as the perturbed equations for a = 0 and 

$x from the generalized formulation. 
Recognizing that the right-hand side of (29) and (30) vanish a t  fl  = 0 and CO, let 

us first consider their asymptotic form as E + O .  Here, in order to satisfy h = 0 at 
6 = 0, we assume h - En, n > 0. It can then be shown that this function has the 
property that as f+o ,  both dh/d[ and E2/h8 diverge and 1 > n > 0. Using this 
property in (31) readily yields 

which upon integration yields 

Substituting (A 2) into (15) gives the boundary-layer thickness 

Furthermore, (A 3) reduces (29) and (30) to 

which are the self-similar equations for the horizontal-plate case. 
In the limit of E +  co, if dh/df is finite or divergent, then h - n 2 0, which 

results in [2/hS-+0 and hence an imaginary value for dhldt. This contradicts the 
original assumption, implying that dh/dt+O as l+ co in (31). Consequently 

which yields 
h = fli (A 6) 

and casts (29) and (30) into the self-similar form for the vertical case, 

l i T ” - L L 2 + p y + O  = 0, 

sU+iPrFB’ = 0. 

Starting with the above self-similar solution, the perturbation solution from the 
horizontal-plate case is obtained as follows. For small we may regard f @ 1 for h = 
(5/2K)t$(l+f), and (31) may be linearized to 

which has the general solution 
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Here the constant of integration, C, must be zero because of the condition f(0) = 0. 
Thus, it is expected that F and 8 as well as f are expanded about = 0 in power series 
of $. The first terms F, and 8, obey 

subject to 

where Fo and 8, are given by the solutions to (A 4) and (A 5 ) .  

the general solution 

F,(O) = Fi(0)  = F ~ ( c o )  = 8,(0) = B,(co) = 0. (A 14) 

Similarly for large c we put h = @(l +f). The linearized equation for small f gives 

4 exp ( - 4$) [ $ c-g exp (v 5‘) d c  + C]. f = +-I (A 15) 

It should be noted that this solution vanishes for any finite value of C as 5 tends to 
infinity. In  fact, it is this integration constant that makes the solution connect to the 
other limiting solution above. The functions F and 8 therefore cannot be expanded 
in a regular expansion form, for example as a power series in @, unlike the 
perturbation solution from the horizontal-plate case. 
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